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Generalizable Humanoid Manipulation with 3D Diffusion Policies
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Fig. 1: Humanoid manipulation in diverse unseen scenarios. With our system, we are able to 1) collect human-like
imitation learning data and 2) enable a full-sized humanoid robot to perform useful skills in diverse real-world environments
using data only from a single scene,. The scenes are not cherry-picked. Videos are available on jour website,

Abstract— Humanoid robots capable of autonomous opera-
tion in diverse environments have long been a goal for roboti-
cists. However, autonomous manipulation by humanoid robots
has largely been restricted to one specific scene, primarily
due to the difficulty of acquiring generalizable skills and the
expensiveness of in-the-wild humanoid robot data. In this
work, we build a real-world robotic system to address this

challenging problem. Our system is mainly an integration of
1) a whole-upper-body robotic teleoperation system to acquire
human-like robot data, 2) a 25-DoF humanoid robot platform
with a height-adjustable cart and a 3D LiDAR sensor, and
3) an improved 3D Diffusion Policy learning algorithm for
humanoid robots to learn from noisy human data. We run
more than 2000 episodes of policy rollouts on the real robot
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for rigorous policy evaluation. Empowered by this system, we
show that using only data collected in one single scene and
with only onboard computing, a full-sized humanoid robot can
autonomously perform skills in diverse real-world scenarios.
Videos are available at humanoid-manipulation.github.io,

I. INTRODUCTION

Robots capable of performing diverse tasks in unstruc-
tured environments have long been a significant goal in
the robotics community, with the development of intelli-
gent humanoid robots representing one promising pathway.
Recently, substantial progress has been made in developing
humanoid robot hardware [11]-[15] as well as teleoperation
and learning systems for these robots [4], [6], [7], [10], [16].
However, due to the limited generalization capabilities of the
employed learning methods [17]-[21] and the high cost of
acquiring humanoid robot data from diverse scenes, these
autonomous humanoid manipulation skills are all confined
to their training scenarios and hard to generalize to new
scenes [3]-[7], [10], [16], [22], as shown in Table

In this work, we aim to develop a real-world humanoid
robot learning system that can learn generalizable humanoid
manipulation skills by 3D visuomotor policies. An overview
of our system is in Figure [2]

First, we design a humanoid robot learning platform,
where a 29-DoF full-sized humanoid robot is fixed on
a moveable and height-adjustable cart. This platform can
stabilize humanoid robots even when the waist is leaning
forward, so that we can safely utilize the waist DoF of
humanoid robots. Besides, the robot head is attached with
a 3D LiDAR sensor for generalizable policy learning.

Second, for human-like data collection, we design a
whole-upper-body teleoperation system that maps human
joints to a full-sized humanoid robot. Unlike the common
bi-manual manipulation system, our teleoperation incorpo-
rates waist degrees of freedom and active vision, greatly
expanding the robot’s operational workspace, particularly
when handling tasks at varying heights. We also stream real-
time vision from LiDAR sensors to humans for egocentric
teleoperation.

Third, to learn generalizable manipulation skills with
egocentric human data, we re-formulate the third-person 3D
learning algorithm 3D Diffusion Policy (DP3, [2]) to an
egocentric version, eliminating the need for camera calibra-
tion and point cloud segmentation. By more than 2000 real-
world evaluation trials, we bring solid improvements over
the original DP3 towards real-world humanoid manipulation.
The resulting policy is termed as the Improved 3D Diffusion
Policy (iDP3). Though this work only applies iDP3 on the
Fourier GR1 [15] humanoid robot, we emphasize that iDP3
is a general 3D learning algorithm that can be applied
to different robot platforms including mobile robots and
humanoid robots.

Finally, we deploy our system to unseen real-world sce-
narios. We surprisingly found that, due to the robustness of
our 3D representations and the flexibility of our platform,
our policy zero-shot generalize to a lot of randomly selected

unseen scenarios, such as kitchens, meeting rooms, and
offices, as shown in Figure

To summarize our contributions, we build a real-world
humanoid robot system that can learn generalizable ma-
nipulation skills from only one single scene, utilizing 3D
visuomotor policies. As far as we know, we are the first to
successfully enable a full-sized humanoid robot to performs
skills autonomously in diverse unseen scenes with data only
from a single scene using 3D imitation learning.

II. RELATED WORK

The autonomous execution of diverse skills by humanoid
robots in complex, real-world environments has long been
a central goal in robotics. Recently, learning-based methods
have shown promising progress toward this objective, partic-
ularly in the areas of locomotion [23]-[27], manipulation [4],
[10], [28], and loco-manipulation [6], [7], [16], [29]. While
several works have successfully demonstrated humanoid
locomotion in unstructured, real-world environments [23],
[24], [26], manipulation skills in unseen environments remain
largely unexplored [6], [7], [10].

In Table [l we list recent works that build real-world
robotic systems for humanoid robots/dexterous manipulation.
We found that existing works in humanoid robots [3], [4],
[6], [7], [10], [22] miss the study of generalization abili-
ties for humanoid manipulation, mainly due to the limited
generalization abilities of their algorithm and the limited
flexibility of their system. For example, the platform for
OpenTeleVision [10] and HATO [22] does not support the
movable base and waist, limiting the working space of the
robot. HumanPlus [7] and OmniH2O [6] can whole-body
teleoperate the humanoid robot, while the manipulation skills
learned from their system are only limited to the training
scene and can not generalize to other scenes due to the
hardness in collect diverse data. Maniwhere [9] achieves
real-world scene generalization on simple tabletop pushing
tasks, while it is hard to apply their sim-to-real pipeline to
humanoid robots due to the system complexity of humanoid
robots. Similarly, 3D Diffusion Policy (DP3, [2]) only shows
the object/view generalization with tabletop robot arms. The
Robot Utility Model [30] also generalizes skills to the new
environment with imitation learning, while they have to
use data collected from 20 scenes for scene generalization,
compared to only 1 scene we use.

In this paper, we take a significant step forward by building
a real-world humanoid robot learning system that enables a
full-sized humanoid robot to perform manipulation tasks in
unseen real-world scenes, utilizing 3D visuomotor policies.

ITI. GENERALIZABLE HUMANOID MANIPULATION WITH
3D DIFFUSION POLICIES

In this section, we present our real-world imitation learn-
ing system deployed on a full-sized humanoid robot. An
overview of the system is provided in Figure
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TABLE I: Compared to recent real-world robot learning systems for humanoid robots and dexterous manipulation, our work
focuses on developing a humanoid learning system that generalizes the learned policy to unseen real-world scenes—an

aspect that has been missing in previous humanoid works.

Teleoperation Generalization Abilities Rigorous Policy Evaluation

Method Arm&Hand Head Waist Leg Object Camera View Scene Real-World Episodes
AnyTeleop [1] v X X X v X X 0

DP3 [2] v X X X v v X 186
BunnyVisionPro [3] v X X X v X X 540

ACE [4] v X X X X X X 60

Bi-Dex [5] v X X X X X X 50
OmniH20 [6] v X X v X X X 90
HumanPlus [7] v X X v X X X 160

Hato [8] v X X X X X X 300
ManiWhere [9] v X X X v v v 200
OpenTeleVision [10] v v X X X X X 75

This Work v v v X v v v 2253

A. Humanoid Robot Platform

Humanoid Robot. We use Fourier GR1 [15], a full-sized
humanoid robot, equipped with two Inspire Hands [31]. We
enable the whole upper body {head, waist, arms, hands},
totaling 25 degrees-of-freedom (DoF). We disable the lower
body for stability and instead use a cart for movement.
Though previous systems such as HumanPlus [7] and Om-
niH20 [6] have shown the usage of humanoid legs, the loco-
manipulation skills of these systems are still limited due to
the hardware constraints. We emphasize that our system with
3D learning algorithms is general and could generalize to
other humanoid robots with and without legs.

LiDAR Camera. To capture high-quality 3D point clouds,
we utilize the RealSense L515 [32], a solid-state LiDAR
camera. The camera is mounted on the robot head to provide
egocentric vision. Previous studies have demonstrated that
cameras with less accurate depth sensing, such as the Re-
alSense D435 [33], can result in suboptimal performance for
DP3 [2], [34]. It is important to note that, however, even the
RealSense L515 does not produce perfectly accurate point
clouds. We also try other LiDAR cameras such as Livox
Mid-360, but we found that the resolution and the frequency
of such LiDARs do not support contact-rich and real-time
robotic manipulation.

Height-Adjustable Cart. A major challenge in generaliz-
ing manipulation skills to real-world environments is the
wide variation in scene conditions, particularly the differing
heights of tabletops. To address this, we utilize a height-
adjustable cart, eliminating the need for complex whole-body
control. While this simplifies the manipulation process, we
believe our approach will perform equally well once whole-
body control techniques become more mature.

B. Human-Like Robot Data

Whole-Upper-Body Teleoperation. To obtain human-like
humanoid robot data, we design a teleoperation system that
can teleoperate the robot’s entire upper body, including the
head, waist, hands, and arms. We use the Apple Vision Pro
(AVP, [35]) to obtain accurate and real-time human data,

e.g., the 3D positions and orientations of the head/hand-
s/wrists [36]. With this human data, we compute the cor-
responding robot joint angles respectively. More specifically,
1) the robot arm joints are computed with Relaxed IK [37]
to track human wrist positions; 2) the robot waist and head
joints are computed by using the rotation of the human head.
We also stream the real-time robot vision back to humans
for immersive teleoperation feedback [10].

Latency of Teleoperation. The use of a LiDAR sensor
significantly occupies the bandwidth/CPU of the onboard
computer, resulting in a teleoperation latency of approxi-
mately 0.5 seconds. We also try two LiDAR sensors (one ad-
ditionally mounted on the wrist), which introduce extremely
high latency and thus make the data collection infeasible.
Data for Learning. We collect trajectories of observation-
action pairs during teleoperation, where observations consist
of two parts: 1) visual data, such as point clouds and images,
and 2) proprioceptive data, such as robot joint positions.
Actions are represented by the target joint positions. We
also tried using end-effector poses as proprioceptions/actions,
finding that directly applying joint positions as action space
is more accurate, mainly due to the noise in the real world
to compute the end-effector poses.

C. Improved 3D Diffusion Policy

3D Diffusion Policy (DP3, [2]) is an effective 3D visuo-
motor policy that marries sparse point cloud representations
with diffusion policies. Although DP3 has shown impressive
results across a wide range of manipulation tasks, it is
not directly deployable on general-purpose robots such as
humanoid robots or mobile manipulators due to its inherent
dependency on precise camera calibration and fine-grained
point cloud segmentation. Furthermore, the accuracy of DP3
requires further improvements for effective performance in
more complex tasks. In the following, we detail several mod-
ifications to achieve targeted improvements. The resulting
improved algorithm is termed as the Improved 3D Diffusion
Policy (iDP3).

Egocentric 3D Visual Representations. DP3 leverages a
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Fig. 2: Overview of our system. Our system mainly consists of four parts: the humanoid robot platform, the data collection
system, the visuomotor policy learning method, and the real-world deployment. With this system, our humanoid robot

performs autonomous skills in diverse real-world scenes.

World Frame
y (DP3 and Other 3D Policies)

Camera Frame
(iDP3)
Fig. 3: iDP3 utilizes 3D representations in the camera
frame, while the 3D representations of other recent 3D
policies including DP3 [2] are in the world frame, which
relies on accurate camera calibration and can not be extended
to mobile robots.

3D visual representation in the world frame, enabling easy
segmentation of the target object [2], [28]. However, for
general-purpose robots like humanoids, the camera mount
is not fixed, making camera calibration and point cloud
segmentation impractical. To tackle this problem, we propose
directly using the 3D representation from the camera frame,
as shown in Figure [3] We term this class of 3D representa-
tions as egocentric 3D visual representations.

Scaling Up Vision Input. Leveraging egocentric 3D visual
representations presents challenges in eliminating extraneous
point clouds, such as backgrounds or tabletops, especially
without relying on foundation models. To mitigate this, we
propose a straightforward but effective solution: scaling up
the vision input. Instead of using standard sparse point sam-
pling as in previous systems [2], [28], [38], we significantly
increase the number of sample points to capture the entire
scene. Despite its simplicity, this approach proves to be
effective in our real-world experiments.

Improved Visual Encoder. We replace the MLP visual
encoder in DP3 with a pyramid convolutional encoder. We
find that convolutional layers produce smoother behaviors
than fully-connected layers when learning from human data,
and incorporating pyramid features from different layers

further enhances accuracy.

Longer Prediction Horizon. The jittering from human
experts and the noisy sensors exhibit much difficulty in
learning from human demonstrations, which causes DP3 to
struggle with short-horizon predictions. By extending the
prediction horizon, we effectively mitigate this issue.
Implementation Details. For the optimization, we train 300
epochs for iDP3 and all other methods with AdamW [39].
For the diffusion process, we use 50 training steps and
10 inference steps with DDIM [40]. For the point cloud
sampling, we replace farthest point sampling (FPS) used
in DP3 [2] with a cascade of voxel sampling and uniform
sampling, which ensures the sampled points cover the 3D
space with a faster inference speed.

D. Real-World Deployment

We train iDP3 on our collected human demonstrations.
Notably, we do not rely on camera calibration or manual
point cloud segmentation as mentioned before. Therefore,
our iDP3 policy can be seamlessly transferred to new
scenes without requiring additional efforts such as calibra-
tion/segmentation. Besides, iDP3 performs real-time infer-
ence (15hz) with only onboard robot computing, making the
deployment to the open world accessible.

IV. EXPERIMENTS AND ANALYSIS

To evaluate the effectiveness of our system, we conduct
extensive real-world ablations with our system. We select the
Pick&Place task as the primary benchmark for our analysis,
and further showcase the Pick&Place, Pour, and Wipe tasks
in diverse unseen scenarios.

A. Experiment Setup

Task Description. In this task, the robot grasps a lightweight
cup and moves it aside. The challenge for humanoid robots
with dexterous hands is that the cup is similar in size to the
hands; thus, even small errors result in collisions or missed
grasps. This task requires more precision than using parallel
grippers, which can open wider to avoid collisions.
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Fig. 4: Visualization of egocentric 2D and 3D observations. This figure highlights the complexity of diverse real-world

scenes. Videos are available on lour websitel

TABLE II: Efficiency of iDP3 compared to baselines. To
improve the robustness of the baselines, we have added Ran-
dom Crop and Color Jitter augmentation to all image-based
methods during training. All the methods are evaluated
with more than 100 trials, ensuring less randomness in real-
world evaluation. Without modification, original DP [17] and
DP3 [2] work badly on our humanoid robot.

. DP DP iDP3 .
Baselines | DP DP3  .paNy  kR3M)  (DP3 Encodery  1PP3
Ist-1 00 00 1133 24/39 15/34 21/38
1st-2 734 00 10/28 27136 12127 19/30
3rd-1 736 00 18/38 26/38 15/32 19/34
3rd-2 1036 000 23/39 22/34 16/34 16/37
Total | 24/106 00  62/138  99/147 58/127 75/139

Task Setting. We train the Pick&Place task under four
settings: {1st-1, 1st-2, 3rd-1, 3rd-2}. “Ist” uses an egocentric
view, and “3rd” uses a third-person view. The numbers
behind represent the number of demonstrations used for
training, with each demonstration consisting of 20 rounds
of successful execution. The training dataset is kept small
to highlight the differences between methods. The object
position is randomly sampled in a 10cmx20cm region.
Evaluation Metric. We run three episodes for each method,
each consisting of 1,000 action steps. In total, each method
is evaluated with around 130 trials, ensuring a thorough
evaluation of each method. We record both the number of
successful grasps and the total number of grasp attempts. The
successful grasp count reflects the accuracy of the policy. The
total number of attempts serves as a measure of the policy’s
smoothness, since the jittering policies tend to hang around
and have few attempts as we observe in experiments.

B. Effectiveness

We compare iDP3 with several strong baselines, including:
a) DP: Diffusion Policy [17] with a ResNet18 encoder; b) DP
(*R3M): Diffusion Policy with a frozen R3M [41] encoder;
c) DP (x*R3M): Diffusion Policy with a finetuned R3M
encoder; d) original DP3 without any modifications; and e)
iDP3 (DP3 Encoder): iDP3 using the DP3 encoder [17]. All
image-based methods use the same policy backbone as iDP3

Pick & Place

Fig. 5: Trajectories of our three tasks in the training
scene, including Pick&Place, Pour, and Wipe. We carefully
select daily tasks so that the objects are common in daily
scenes and the skills are useful across scenes.

and Random Crop and Color Jitter augmentations to improve
robustness and generalization. The RGB image resolution is
224 x 224, resized from the raw image from the RealSense
camera.

The results, presented in Table [l show that iDP3 signif-
icantly outperforms vanilla DP and DP3, DP with a frozen
R3M encoder, and iDP3 with the DP3 encoder. However,
we find that DP with a finetuned R3M is a particularly
strong baseline, outperforming iDP3 in these settings. We
hypothesize that this is because finetuning pre-trained models
are often more effective compared to training-from-scratch
[42], and there are currently no similar pre-trained 3D visual
models for robotics.
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DP produces J1tter1ng behav1ors When grasplng the training obJect in the new scene.

Fig. 6: Failure cases of image-based methods in new scenes. Here DP corresponds to DP ((R3M) in Table [[I, which is
the strongest image-based baseline we have. We find that even added with color augmentation during training, image-based

methods still struggle in the new scene/object.

Training Time (minutes)
o 10 20 30 40 50 60 70 80

DP 80min

iDP3 30min

Fig. 7: Training time. Due to using 3D representations,
iDP3 saves training time compared to Diffusion Policy (DP),
even after we scale up the 3D vision input. This advantage
becomes more evident when the number of demonstrations
gets large.

Though DP+finetuned R3M is more effective in these
settings, we find that image-based methods are overfitting
to the specific scenario and object, failing to generalize to
wild scenarios, as shown in Section [V-D]

Additionally, we believe there is still room for improve-
ment in iDP3. Our current 3D visual observations are quite
noisy due to the limitations of the sensing hardware. We
expect that more accurate 3D observations could lead to opti-
mal performance in 3D visuomotor policies, as demonstrated
in simulation [2].

C. Ablations

We conduct ablation studies on several modifications to
DP3, including improved visual encoders, scaled visual in-
put, and a longer prediction horizon. Our results, given in
Table demonstrate that without these modifications DP3
either fails to learn effectively from human data or exhibits
significantly reduced accuracy.

More specifically, we observe that 1) our improved visual
encoder could both improve the smoothness and accuracy
of the policy; 2) scaled vision inputs are helpful, while the
performance gets saturated in our tasks with more points; 3)
an appropriate prediction horizon is critical, without which
DP3 fails to learn from human demonstrations.

Additionally, Figure [7] presents the training time for iDP3,

TABLE III: Ablation on iDP3. The results demonstrate that
removing certain key modifications from iDP3 significantly
impacts the performance of DP3, leading to either failure
in learning from human data or reduced accuracy. All the
methods are evaluated with more than 100 trials, ensuring
less randomness in real-world evaluation.

Visual Encoder | Ist-1 Ist:2  3rd-1  3rd-2 | Total
Linear (DP3) 15/34 12/27 15/32 16/34 | 58/127
Conv 9/33 14/32 14/33  12/33 | 49/131
Linear+Pyramid 15/34  20/31  13/33  18/36 | 66/134
Conv+Pyramid (iDP3) | 21/38 19/30  19/34  16/37 | 75/139
Number of Points | 1st-1 Ist-2  3rd-1  3rd-2 | Total

1024 (DP3) 11/28 10/30  18/35 17/36 | 56/129
2048 17/35 13/28 17/32  18/33 | 65/128
4096 (iDP3) 21/38  19/30  19/34  16/37 | 75/139
8192 24/35  16/28 14/33  18/36 | 72/132
Prediction Horizon \ 1st-1 Ist-2  3rd-1  3rd-2 \ Total

4 (DP3) 0/0 0/0 0/0 0/0 0/0

8 0/0 3/18 18/36 12/34 33/88
16 (iDP3) 21/38  19/30  19/34  16/37 | 75/139
32 9/34 20/30 14/33 12/33 55/130

demonstrating a significant reduction compared to Diffusion
Policy. This efficiency is maintained even when the number
of point clouds increases to several times that of DP3 [2].

D. Capabilities

In this section, we show more generalization capabilities
of our system on humanoid robots. We also conduct more
comparisons between iDP3 and DP (%R3M) (abbreviated as
DP in this section) and show that iDP3 is more applicable
in the challenging and complex real world. Results are given
in Table [V]

Tasks. We select three tasks, Pick&Place, Pour, and Wipe, to
demonstrate the capabilities of our system. We ensure that
these tasks are common in daily life and could be useful
for humans. For instance, Pour is frequently performed in
restaurants, and Wipe in cleaning tables in households.

Data. For each task, we collect 10 demonstrationsx 10



TABLE IV: Capabilities of iDP3. While iDP3 maintains similar efficiency to DP (kR3M) (abbreviated as DP), it stands out
with remarkable generalization capabilities, making it well-suited for real-world deployment. For evaluation in the new scene,
we use the kitchen scene shown in Figure [6] and unseen objects are also included. We do not test Wipe in generalization
settings since Wipe is achieved with high success rates for all methods. We do not conduct more evaluation on baselines
in other unseen real-world scenes as we find the baselines can not work in unseen scenes, same as what we observe in the

kitchen scene.

Training | DP  iDP3 New Object | DP  iDP3  New View | DP  iDP3  New Scene | DP  iDP3
Pick&Place 9/10 9/10 Pick&Place 3/10 910 Pick&Place | 2/10  9/10 Pick&Place | 2/10  9/10
Pour 9/10 9/10 Pour 1710 9/10 Pour 0/10 9110 Pour 1710  9/10
Wipe 10/10  10/10 Wipe - - Wipe - - Wipe - -

iDP3 is robust to large view changes

Fig. 8: View invariance of iDP3. We find that egocentric 3D
representations are surprisingly view-invariant. Here DP cor-
responds to DP (*kR3M) in Table [I[I, which is the strongest
image-based baseline we have.

rollouts, totalling 300 episodes for all tasks. For Pick&Place
and Pour, the object poses are randomized in a region of
10cmx 10cm.

Effectiveness. As shown in Table [[V] both iDP3 and DP
achieve high success rates in the training environment with
the training objects.

Property 1: View Invariance. Our egocentric 3D represen-
tations demonstrate impressive view invariance. As shown
in Figure 8] iDP3 consistently grasps objects even under
large view changes, while DP struggles to grasp even the
training objects. DP shows occasional success only with
minor view changes. Notably, unlike recent works [38], [43],
[44], we did not incorporate specific designs for equivariance
or invariance.

Property 2: Object Generalization. We evaluated new
kinds of cups/bottles beside the training cup, as shown in
Figure 9] While DP, due to the use of Color Jitter augmenta-
tion, can occasionally handle unseen objects, it does so with
a low success rate. In contrast, iDP3 naturally handles a wide
range of objects, thanks to its use of 3D representations.
Property 3: Scene Generalization. We further deploy our
policy in various real-world scenarios, as shown in Figure T}
These scenes are nearby the lab and none of the scenes
are cherry-picked. The real world is far noisier and more
complex than the controlled tabletop environments used
in the lab, leading to reduced accuracy for image-based
methods (Figure [). Unlike DP, iDP3 demonstrates surpris-

Fig. 9: Objects used in Pick&Place and Pour. We only use
the cups as the training objects, while our method naturally
handles other unseen bottles/cups.

ing robustness across all scenes. Additionally, we provide
visualizations of both 2D and 3D observations in Figure ]

V. CONCLUSIONS AND LIMITATIONS

Conclusions. This work presents a real-world imitation
learning system that enables a full-sized humanoid robot
to generalize practical manipulation skills to diverse real-
world environments, trained with data collected solely in
one single scene. With more than 2000 rigorous evaluation
trials, we present an improved 3D Diffusion Policy, that can
learn robustly from human data and perform effectively on
our humanoid robot. The results that our humanoid robot
can perform autonomous manipulation skills in diverse real-
world scenes show the potential of using 3D visuomotor
policies in real-world manipulation tasks with data efficiency.

Limitations. 1) Teleoperation with Apple Vision Pro is easy
to set up, but it is tiring for human teleoperators, making
imitation data hard to scale up within the research lab. 2)
The depth sensor still produces noisy and inaccurate point
clouds, limiting the performance of iDP3. 3) Collecting
fine-grained manipulation skills, such as turning a screw,
is time-consuming due to teleoperation with AVP; systems
like Aloha [18] are easier to collect dexterous manipulation
tasks at this stage. 4) We avoided using the robot’s lower
body, as maintaining balance is still challenging due to the
hardware constraints brought by current humanoid robots.
In general, scaling up high-quality manipulation data is the
main bottleneck. In the future, we hope to explore how to
scale up the training of 3D visuomotor policies with more
high-quality data and how to employ our 3D visuomotor
policy learning pipeline to humanoid robots with whole-body
control.
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