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Figure 1: We deploy the general unified motion tracking policy on a medium-sized humanoid robot.
GMT can perform a wide range of motion skills with good stability and generalizability, including
(a) stretching, (b) kicking-ball, (c) dancing, (d) high kicking, (e) kungfu, and (f) other dynamic
skills such as boxing, running, side stepping, and squatting.

Abstract: The ability to track general whole-body motions in the real world is
a useful way to build general-purpose humanoid robots. However, achieving this
can be challenging due to the temporal and kinematic diversity of the motions,
the policy’s capability, and the difficulty of coordination of the upper and lower
bodies. To address these issues, we propose GMT, a general and scalable motion-
tracking framework that trains a single unified policy to enable humanoid robots to
track diverse motions in the real world. GMT is built upon two core components:
an Adaptive Sampling strategy and a Motion Mixture-of-Experts (MoE) architec-
ture. The Adaptive Sampling automatically balances easy and difficult motions
during training. The MoE ensures better specialization of different regions of the
motion manifold. We show through extensive experiments in both simulation and
the real world the effectiveness of GMT, achieving state-of-the-art performance
across a broad spectrum of motions using a unified general policy. Videos and
additional information can be found at gmt-humanoid.github.io.
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1 Introduction

One of the primary goals for humanoid robots is to perform a wide range of tasks in everyday
environments. Enabling humanoid robots to produce a broad repertoire of human-like movements is
a promising approach towards achieving this objective. To generate such human-like movements, a
general whole-body controller is required — one capable of leveraging a wide corpus of motor skills
to perform both basic tasks, such as natural walking, and more dynamic and agile actions, such as
kicking and running. With such a robust whole-body controller, it becomes possible to integrate a
high-level planner that selects and sequences skills autonomously, paving the way towards general-
purpose humanoid robots.

Manually designing such controllers can be challenging and labor-intensive due to the high degrees
of freedom (DoFs) in humanoid systems and the complexity of real-world dynamics. Since hu-
manoid robots are designed to closely resemble the human body, human motion data offers an ideal
resource for equipping robots with a rich set of skills. In the field of computer graphics, researchers
have leveraged human motion data and learning-based methods to develop a single unified controller
for simulated characters that can reproduce a wide variety of motions and perform diverse skills with
remarkably human-like behaviors [1, 2, 3, 4, 5].

Despite great progress in simulated domains, developing such a generic unified controller for hu-
manoid robots can be challenging due to:

• Partial Observability. For real-world robots, full state information like linear velocities
and global root positions is not accessible, which is quite important when learning mo-
tion tracking policies. The absence of this information makes the training process more
challenging.

• Hardware Limitations. Existing human motion datasets often include movements such
as back-flipping and rolling, which are infeasible for humanoid robots to execute due to
hardware limitations. Moreover, even for more basic skills like walking and running, robots
may struggle to produce enough torque to accurately match the speed and dynamics of
human motion. These mismatches require extra special handling during the training of
motion tracking controllers for robots.

• Unbalanced Data Distribution. Large mocap datasets like AMASS [6] often exhibit
highly unbalanced distributions, as shown in Fig. 2, with a large proportion of motions
involving walking or in-place activities. The scarcity of more complex or dynamic motions
can cause the robot to struggle in mastering these less frequent but critical skills.

• Model Expressiveness. While a simple MLP-based network may be sufficient to develop a
satisfying control policy when tracking a few motion clips, it often struggles when applied
to large Mocap datasets. Such architectures typically lack the capacity to capture complex
temporal dependencies and to distinguish between diverse motion categories. This lim-
ited expressiveness can result in sub-optimal tracking performance and poor generalization
across a wide range of skills.

Although existing works have tried to solve some individual issues mentioned above, for example,
teacher-student training framework is used to handle partial observability [7, 8]; several categories of
small datasets are used to fine-tune separate specialist policies [7]; and a transformer model is used to
increase the expressiveness of the model [9], developing a unified general motion tracking controller
remains an open problem. This paper demonstrates that by addressing data distribution and model
problems jointly, along with some other careful design decisions to handle partial observability and
hardware issues, we can create an effective system for training general motion tracking controllers
for real humanoid robots. A brief comparison of our work with highly related existing works is
shown in table 1. We measure if a policy is diverse based on its ability to perform a broad range of
both upper-body and lower-body skills, including variations in walking styles, crouching, kicking,
and other expressive whole-body movements.
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Figure 2: Distribution of motion categories
in the AMASS dataset. The figure shows
the proportion of the total motion duration
corresponding to each category.

In this paper, we propose GMT, a general and effec-
tive framework that trains a single unified, high-quality
motion tracking policy for real-world humanoid robots
from large mocap datasets. Central to GMT are two
key innovations: a novel Adaptive Sampling strategy,
designed to mitigate issues of struggling to learn less
frequent motions arising from uneven motion category
distributions, and a motion Mixture-of-Experts (MoE)
architecture to enhance model expressiveness and gen-
eralizability. Fig. 1 showcases the real-world deploy-
ment of our policy, demonstrating its ability to re-
produce a wide range of basic locomotion and agile
skills with high fidelity, achieving state-of-the-art per-
formance using a single unified policy. For more de-
tails, please refer to our project website.

Table 1: Comparison of closely related works.
Method Single Policy Whole-Body Diverse Dataset Size

ExBody [10] ✓ ✗ ✗ 780 clips
ExBody2 [7] ✓ ✓ ✓ 1050 clips(filtered)

HumanPlus [9] ✓ ✓ ✗ 10k clips
OmniH2O [8] ✓ ✓ ✗ 14k clips (augmented)

ASAP [11] ✗ ✓ ✓ – (internet clips)
GMT (Ours) ✓ ✓ ✓ 8925 clips (filtered)

2 Related Works

Developing a general whole-body controller that enables humanoid robots to perform a wide range
of skills has long been a fundamental yet challenging problem, primarily due to the systems’ high
dimensionality and inherent instability. Traditional model-based methods have achieved robust
whole-body locomotion controllers for bipeds and humanoids with gait planning and dynamics
modeling [12, 13, 14]. However, designing such controllers can be labor-intensive and requires
careful handling of complex dynamics. In recent years, learning-based approaches have made sig-
nificant progress in building whole-body controllers. They either develop the controller with care-
ful hand-designed task rewards [15, 16, 17, 18, 19, 20, 21, 22], or with human motions as refer-
ence [11, 8, 9, 7, 10, 23, 24].

2.1 Learning-based Humanoid Whole-Body Control

This work focuses on whole-body control for humanoid robots. Previous studies have demonstrated
that whole-body control policies, trained with manually designed rewards, can enable humanoid
robots to perform locomotion skills such as walking [15, 16, 17, 18, 19], jumping [25, 26, 27], and
fall-recovery behaviors [28, 29]. However, these controllers are typically task-specific, requiring
training separate policies with customized reward functions for each task. For instance, policies
developed for walking are not easily transferable to tasks such as jumping or manipulation. In
contrast, human motion data offers a promising way to develop general purpose controllers without
having to design task-specific reward functions for each skill we want the agent to perform.

2.2 Humanoid Motion Imitation

Leveraging human motion data to develop human-like whole-body behaviors for robots has been ex-
tensively studied in character animation. Previous works have achieved high-quality and general mo-
tion tracking on simulated characters [1, 3, 5, 4], and diverse motion skills for various downstream
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Figure 3: An overview of GMT. Here gt denotes the motion target frame, ot denotes proprioceptive
observation, and et denotes privileged information.

tasks [30, 2, 31, 32, 33]. However, due to the partial observability in the real world, developing such
whole-body controllers for real robots [10, 34, 9, 8, 7, 11, 35, 36, 37] can be challenging. For devel-
oping a unified general whole-body motion tracking controller, some works decouple upper-body
and lower-body control to compromise between expressiveness and balance [10, 34]. HumanPlus [9]
and OmniH2O [8] then successfully enabled whole-body motion imitation on a full-sized robot, but
with unnatural movements in the lower body. ExBody2 [7] achieved better whole-body tracking
performance but with several separate specialist policies. VMP [35] demonstrated high-fidelity re-
production of a wide range of skills on the real robot, but its dependency on the mocap system during
deployment limits its applicability in the wild.

3 Learning General Motion Tracking Controllers

In this section, we introduce GMT, a framework for developing general and high-quality motion
tracking controllers for real-world humanoid robots. GMT follows the two-stage teacher-student
training framework similar to prior works [7, 8], where a privileged teacher policy is first trained
using PPO [38], and a student policy is then trained using DAgger[39] by imitating the output of the
teacher policy. For the following part, we first introduce the core components of our method, which
are Adaptive Sampling strategy and Motion MoE architecture. Then we present some key designs
that are also crucial for policy learning, including motion input designs and the dataset curation
process.

3.1 Adaptive Sampling

As illustrated in Fig. 2, large motion datasets like AMASS [6] exhibit significant category unbalance.
This unbalance can substantially hinder the learning of less frequent and more complex motions.
Moreover, longer sequences within such datasets are often composite motions, consisting of a series
of skills that include both basic and challenging segments. Using previous sampling strategies [5, 3],
when a policy fails on harder segments, it is still trained on the entire motion sequence — often
dominated by easier parts — which results in a low effective sampling rate for the difficult portions.

To address these issues, we introduce Adaptive Sampling, which consists of two key components:

• Random Clipping: Motions longer than 10 seconds are clipped into several sub-clips,
each with a maximum length of 10 seconds. To prevent artifacts at clip transitions, we
apply randomized clipping by introducing a random offset of up to 2 seconds. Additionally,
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all motions are re-clipped periodically during training to further diversify the sampled sub-
clips;

• Tracking Performance-based Probabilities: During training, we log the completion level
ci of each motion, and terminate episodes when the tracking error exceeds Ei. ci starts at
10 and decays by multiplying 0.99 each time the motion is completed, the minimum value
is 1. And Ei = 0.25 exp((ci − 1)/(10− 1) ∗ log(0.6/0.25)). We then define the sampling
level si of each motion as:

si =

{
(min (Emax key body error/0.15, 1))

5
, ci = 1,

ci, ci > 1.
(1)

The actual sampling probability is obtained by normalizing si.

By applying Adaptive Sampling from the start of training, we avoid repeatedly sampling easy seg-
ments of long motions and focus training efforts on refining performance on harder motions with
higher tracking errors.

3.2 Motion Mixture-of-Experts

To enhance the expressiveness of the model, we incorporate a soft MoE module during the training
of the teacher policy. An illustration of our model is shown in Fig. 3. The policy network consists of
a group of expert networks and a gating network. The expert networks take both of the robot state
observation and motion targets as input, which output the final action at. The gating network also
takes the same input observations and outputs a probability distribution over all experts. The final
action output is a combination of actions sampled from each expert’s individual action distributions:
a =

∑n
i=1 piai, where pi is the probability of each expert output by the gating network and ai is

the output of each expert policy.

3.3 Dataset Curation

We use a combination of AMASS [6] and LAFAN1 [40] to train the motion tracking policy. Since
raw datasets contain infeasible motions like crawling, fallen states, and extremely dynamic ones due
to hardware constraints. As infeasible motions represent noise and can hamper learning, we adopt a
two-stage data curation process similar to previous works [5]. In the first stage, we apply rule-based
filtering to eliminate infeasible motions — for example, motions where the root’s roll or pitch angles
exceed specified thresholds, or where the root height is abnormally high or low. In the second stage,
we train a preliminary policy on previously filtered dataset with approximately 5 billion samples.
Based on the completion rates achieved by this policy, we further filter out failed motions. This
results in a curated version of the training dataset - a subset of AMASS and LAFAN1 with 8925
clips totaling 33.12 hours.

3.4 Motion Inputs

The goal of motion tracking is to let the robot track specific targets in each motion frame. We repre-
sent the motion tracking target of each frame as: gt = [qt,v

base
t , rbase

t ,pkey
t , hroot

t ], where qt ∈ R23

represents joint positions, vt ∈ R6 denotes the base linear and angular velocities, rt ∈ R2 represents
the base roll and pitch angles, hroot

t represents root height, and pkey
t ∈ R3×num keybody corresponds

to the local key body positions. Unlike prior works that use global key body positions [8, 11], we
adopt local key body positions similar to ExBody2 [7], with the further refinement of aligning the
local key bodies relative to the robot’s heading direction.

Furthermore, to improve tracking performance, we move beyond using only the immediate next
motion frame as input [7, 10, 8]. Instead, we stack multiple consecutive frames [gt, . . . , gt+100]
covering approximately two seconds of future motion. These stacked frames are then compressed
by a convolutional [41] encoder into a latent vector zt ∈ R128, which is then combined with the
immediate next frame gt and fed into the policy network. This design enables the policy to capture
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Table 2: Simulation evaluation of trained policies on AMASS-test and LAFAN dataset. All policies
are trained on our filtered AMASS+LAFAN dataset. For all the baseline comparison and ablation
studies, we only compare the performance of privileged policies.

AMASS-Test LAFAN1
Method Empkpe ↓ Empjpe ↓ Evel ↓ Eyaw vel ↓ Empkpe ↓ Empjpe ↓ Evel ↓ Eyaw vel ↓
Teacher & Student
Privileged Policy 42.07 0.0834 0.1747 0.2238 45.16 0.0975 0.2837 0.3314
Student Policy 42.01 0.0807 0.1943 0.2211 46.14 0.1060 0.3009 0.3489

Baseline
ExBody2 [7] 50.28±0.28 0.0925±0.001 0.1875±0.001 0.3402±0.004 58.36±0.48 0.1378±0.002 0.3461±0.005 0.4260±0.006

GMT (ours) 42.07±0.17 0.0834±0.001 0.1747±0.001 0.2238±0.002 45.16±0.35 0.0975±0.001 0.2837±0.004 0.3314±0.003

(a) Ablations
GMT w.o. MoE 42.53±0.19 0.0874±0.00 0.1902±0.002 0.2483±0.001 48.26±0.29 0.1019±0.001 0.3111±0.003 0.3795±0.005

GMT w.o. A.S. 43.54±0.23 0.0872±0.001 0.2064±0.001 0.2593±0.001 49.61±0.30 0.1041±0.002 0.3019±0.003 0.3574±0.003

GMT w.o. A.S. & MoE 44.34±0.21 0.0920±0.001 0.2121±0.001 0.2534±0.001 52.34±0.33 0.1110±0.002 0.3263±0.003 0.3584±0.007

GMT (ours) 42.07±0.17 0.0834±0.001 0.1747±0.001 0.2238±0.002 45.16±0.35 0.0975±0.001 0.2837±0.004 0.3314±0.003

(b) Motion Inputs
GMT-M 46.02±0.25 0.0942±0.001 0.2282±0.001 0.3311±0.003 51.16±0.34 0.1069±0.002 0.3476±0.001 0.4890±0.007

GMT-L0.5-M 43.64±0.19 0.0855±0.001 0.2051±0.001 0.2439±0.001 49.87±0.32 0.1032±0.002 0.3346±0.005 0.3648±0.003

GMT-L1-M 43.15±0.22 0.0867±0.001 0.1989±0.002 0.2465±0.001 47.41±0.35 0.1007±0.002 0.3047±0.003 0.3513±0.002

GMT-L2 49.52±0.27 0.1016±0.002 0.2201±0.001 0.2888±0.003 61.24±0.42 0.1368±0.002 0.3925±0.008 0.5558±0.009

GMT-L2-M (ours) 42.07±0.17 0.0834±0.001 0.1747±0.001 0.2238±0.002 45.16±0.35 0.0975±0.001 0.2837±0.004 0.3314±0.003

both the long-term trends of the motion sequence and explicitly recognize the immediate tracking
target. We show in experiments that this design is essential to high-quality tracking.

4 Experiments

4.1 Experimental Setups

We evaluate GMT in both simulation and real-world settings. For simulation experiments, each
policy is trained using approximately 6.8 billion samples with domain randomization [42] and ac-
tion delay [43], on a filtered subset of the AMASS and LAFAN1 [40] datasets; and evaluated on
AMASS test set [3] and LAFAN1. We use IsaacGym [44] as the simulator and the number of par-
allel environments is 4096. For ablation studies and baseline comparisons, we focus on evaluating
the performance of the privileged policy, as the deployable student policy is trained solely through
imitation of the privileged teacher. For real-world experiments, we deploy our policy on Unitree
G1 [45], a medium-sized humanoid robot with 23 DoFs and a height of 1.32 meters. The policy
tracking performance is quantitatively evaluated with: 1) Empkpe, mean per keybody position error,
in mm; 2) Empjpe, mean per joint position error, in rad; 3) Evel, linear velocity error, in m/s; 4)
Eyaw vel, yaw velocity error, in rad/s.

4.2 Baselines

We compare GMT’s performance with ExBody2 [7] in simulation. We re-implement ExBody2 and
train it on our filtered dataset. From table 2, we found that GMT outperforms ExBody2 on both
local tracking performance (Empkpe and Empjpe) and global tracking performance (Evel and Eyaw vel).

4.3 Ablation Studies

For this part, we conduct ablation studies to investigate the contribution of each component. Specif-
ically, to evaluate the effects of the Motion MoE architecture and Adaptive Sampling strategy, we
consider ablations include: 1) GMT w.o. A.S. & MoE: MoE model is replaced with an MLP of
equivalent number of parameters and Adaptive Sampling is removed. 2) GMT w.o. MoE: Only
MoE model is replaced with a MLP of the same size. 3) GMT w.o. A.S.: Only Adaptive Sampling
is removed during training.

Additionally, we investigate the impact of motion input configuration with ablations: GMT-M:
Only the immediate next frame of motion is provided as input to the policy network; GMT-Lx-M:
Both the immediate next frame and a window of x seconds of future motion frames are input to
the policy network; GMT-Lx: Only a window of x seconds of future motion frames is provided,
without including the immediate next frame.
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Figure 4: Plot of the output of gating network with respect to time on a motion clip composed of a
sequence of skills.
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Figure 5: Top percentile tracking errors on the whole AMASS dataset.

4.3.1 Motion MoE

As shown in table 2(a), GMT outperforms the baselines in tracking performance on both the AMASS
test set and the entire LAFAN1 dataset. Furthermore, as shown in Fig. 5, where top percentile track-
ing errors on AMASS are recorded. Both the statistics and the figure indicate that MoE helps
improve a lot more on more challenging motions. For qualitative evaluation, Fig. 4, visualized the
expert selection on a composite motion sequence consisting of standing, kicking, walking backward
for a few steps, and standing again. The gating weights of each expert over time show clear transi-
tions in expert activation across different phases of the motion. This suggests that individual experts
specialize in different types of motion, validating the intended role of the MoE structure in capturing
motion diversity.

4.3.2 Adaptive Sampling

As shown in table 2(a), Adaptive Sampling effectively improved the tracking performance on both
datasets. Similar to Motion MoE, as shown in Fig. 5, Adaptive Sampling improves more on more
challenging motions. To qualitatively evaluate the influence of this strategy, we extract a short clip
from a long and composite 240s motion, and compare the performance of policies trained with and
without Adaptive Sampling in Fig. 6(a). In addition, we plot the torque of key joints, including
the knee and hip roll, in Fig. 6(b). The results show that without Adaptive Sampling, the policy
fails to learn this clip with high-quality and struggles to balance. These artifacts make real-world
deployment impossible.

4.3.3 Motion Inputs

Experimental results in table 2(b) show that increasing the motion input window length leads to
improved tracking accuracy. However, the performance of GMT-L2 shows a significant degrada-
tion, indicating that inputting the immediate next frame into the policy network is crucial as well.
This can be explained as that while a sequence of future frames captures the overall tendency of
upcoming motions, it can lose some detailed information. In this way, inputting the immediate next
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With Adaptive Sampling, robot is more stable and closer to global keypoints.

Without Adaptive Sampling, robot is more jittery and struggles to balance.
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Figure 6: The performance of policies with and without Adaptive Sampling on one segment ex-
tracted from a long motion clip. (a) Visualization of policy performance in the simulator. (b) Torque
outputs of several joints corresponding to this segment.
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Figure 7: Motion tracking on MDM-generated motions.

frame into the policy can greatly enhance tracking performance by providing the nearest relevant
information.

4.4 Real-World Deployment

As shown in Fig. 1, we successfully deploy our policy on a real-world humanoid robot, reproducing a
wide range of human motions — including stylized walking, high kicking, dancing, spinning, crouch
walking, soccer kicking, and many others — with high fidelity and state-of-the-art performance. For
more detailed deployment results, please refer to the project website.

4.5 Applications - Tracking MDM-Generated Motions

We test our policy with motion diffusion model (MDM) [46] generated motions in MuJoCo [47]
sim-to-sim settings. Results in Fig. 7 show that GMT can perform well on motions generated with
MDM by text prompts, proving the potential of GMT to be applied to other downstream tasks.

5 Conclusion

In this paper, we introduce GMT, a general and scalable motion tracking framework that trains a
single unified policy to enable humanoid robots to imitate diverse motions in the real world. We
conduct extensive experiments to evaluate the contribution of each component to the overall track-
ing performance and demonstrate that GMT can track motions from other resources like MDM.
Real-world deployment results demonstrate that our general unified policy achieves state-of-the-art
performance compared to prior works. We believe that this general controller can serve as a foun-
dation for future whole-body algorithm development on humanoid robots.
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6 Limitations

While GMT achieves state-of-the-art performance as a unified, general motion tracking controller,
it still has several limitations:

• Lack of Contact-Rich Skills. Due to the significant additional simulation complexity
required to model contact-rich behaviors [28], along with hardware limitations, our frame-
work does not currently support skills such as getting up from a fallen state or rolling on
the ground.

• Limitations on Challenging Terrains. Our current policy is trained without any terrain
observations and is not designed for imitation on challenging terrains like slopes and stairs.
In future work, we aim to extend our framework to develop a general and robust controller
capable of operating across both flat and challenging terrains.
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Appendix

6.1 Goal-Conditioned Reinforcement Learning

In this work, motion tracking problem is defined as a goal-conditioned RL problem where given the
goal, the agent interacts with the environment according to the policy π to maximize an objective
function [48]. At each timestep t, the agent’s policy takes the state st and the goal gt as input,
and outputs the action at, which is formulated as π(at|st, gt). When applied to the environment,
the action at leads to the next state st+1 according to the environment dynamics p(st+1|st,at). A
reward r(st+1, st,at) is received at each timestep. The agent’s goal is to maximize the expected
return:

J(π) = Ep(τ |π)

[
T−1∑
t=0

γtrt

]
, (2)

where p(τ |π) represents the likelihood of the trajectory τ , T denotes the time horizon, and γ is the
discount factor.

6.2 Sim-to-Real Transfer

To enable successful sim-to-real transfer, we apply domain randomizations during the training of
both teacher and student policies [42, 43]. To further align simulation and real-world physical dy-
namics,we explicitly model the effect of the reduction drive’s moment of inertia. Specifically, given
a reduction ratio k, and a reduction drive moment of inertia I , we configure the armature parameter
in the simulator as:

armature = k2I, (3)

to approximate the effective inertia introduced by the reduction drive.

6.3 Policy Learning

Following previous works [7, 8], we adopt a two-stage training framework. In the first stage, we
train a privileged teacher policy that observes both proprioceptive and privileged information, and
outputs joint target actions ât, optimized using PPO [38]. In the second stage, we train a deployable
student policy that takes as input a sequence of proprioceptive observation history, and is supervised
by the teacher policy through DAgger [39]. The student policy is optimized by minimizing the ℓ2
loss between its output at and the teacher’s output ât according to ∥ât − a∥22.

6.4 Observations and Actions

For the teacher policy observations consist of proprioception ot, privileged information et, and
motion targets g. ot consists of root angular velocity (3 dims), root roll and pitch (2 dims), joint
positions (23 dims), joint velocities (23 dims), and last action (23 dims). et consists of root linear
velocity (3 dims), root height (1 dim), key body positions, feet contact mask (2 dims), mass random-
ization params (6 dim), and motor strength (46 dims). For the student policy, observation consists
of proprioception ot, proprioception history ot−20, . . . ,ot, and motion targets g.

The output action is target joint positions.

6.5 Training Details

We use IsaacGym [44] as the physics simulator and the number of parallel environments is 4096.
We train the privileged policy for around 3 days on an RTX4090 GPU, and then train the student
policy for around 1 day. The simulation frequency is 500Hz and the control frequency is 50Hz. The
trained policy is validated in Mujoco [47] before deploying onto the real robot.
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6.6 Reward Functions

Reward functions of first-stage training. Here q denotes joint positions, q̇ denotes joint veocities, q̈
denotes joint accelerations, r denotes root rotations, v denotes root velocites, h denotes root height,
and p denotes key body positions. Full definitions are in table 3.

Table 3: Definitions of Reward Functions.
Name Definitions

tracking joint positions exp(−∥qref
t − qt∥22)

tracking joint velocities exp(−∥ ˙qref
t − q̇t∥22)

tracking root pose exp(−∥rref
t − rt∥22 − ∥href

t − ht∥22)
tracking root vel exp(−∥vref

t − vt∥22)
tracking key body positions exp(−∥pref

t − pt∥22)
alive 1.0

foot slip −∥vfoot
t F foot contact

t ∥2
joint velocities −∥q̇t∥

joint accelerations −∥q̈t∥
action rate −∥at − at−1∥

6.7 Domain Randomizations

To tackle sim-to-real gap, we apply extensive domain randomizations during training time. The
details are shown in table 4.

Table 4: Details of domain randomizations.
Name Range

Terrain Height [0, 0.02]m
Gravity [−0.1, 0.1]
Friction [0.1, 2.0]

Robot Base Mass [−3, 3]kg
Robot Base Mass Center [−0.05, 0.05]m

Push Velocity [0.0, 1.0]m/s
Motor Strength [0.8, 1.2]
Action Delay [0, 0.02]s
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